

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/carbon-language/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/carbon-language/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Dioxide

Dioxide is the main compiler and runtime for the Carbonscript language.

Installation

You can install Dioxide by cloning this repository, and running npm install -g in its root.

Usage

You can execute any utf8 file with carbon code by running carbonc filename.cb

What is Carbonscript?

Carbonscript is a language designed by Nick Vernij [https://github.com/nickforall], I created this language because I was simply bored, and I was annoyed by some of the things other languages do.

Carbonscript is a C-like scripting language, the current builds are almost identical to JavaScript, but I am planning to add unique functionality in the future.

Why Node.js

You’ll probably hate me for using Node.JS as a compiler and VM. I am aware that it is incredibly inefficient as a VM, and probably not the best choice for a compiler too.

The reason why I use node.js is because I want to be able to rapidly prototype the features of my language, which is why I choose a langauge and platform where I have the most experience in: node.js

Roadmap

In the near future I plan to port the VM to a language that compiles to machine code on a lot of platforms, such as C++, C or Rust. I haven’t made my pick yet.

The compiler will obviously be ported to Carbonscript at some point.

Issues

When you have an Issue with your Carbonscript code, it would be incredibly helpful if you could post your code, and if you know what you are doing, the Abstract Syntax Tree.

Also don’t forget to check if the issue still occurs with the latest build on the master branch of this repository.

Contributing

If you’d like to contribute, you can make a pull-request for simple fixes. For additions or more complex issues I would recommend to email me first at hello@nickforall.nl.

I haven’t set any communities up yet, but am planning to do this in the near future.

License

This project is licensed under the Apache License 2.0 license.

Now you’ve made it to the end of this readme, you deserve some coffee, and have fun coding in or contributing to Carbonscript

Globals

Globals are variables that can be accessed anywhere in a Carbon script.
API STATUS: in-dev, APIs aren’t frozen yet and are subject to change

print(string)

Prints a string to stdout. Only one argument can be passed and it’s expected
to be a String, however any carbon object will be converted to a string when
passed.

println(string)

Equilevant of print, except it ends the string with a newline automatically.

unixtime()

Returns the current unix timestamp in seconds.

unixtimemillis()

Returns the current unix timestamp in milliseconds.

sleep(lambda, milliseconds)

Executes a lambda function after a certain amount of milliseconds.

Usage:

sleep(fn() {
 println("This function is executed after 1 second!");
}, 1000);

proc

The process API object

system

The system API object

System

The System API allows you to gather information of the host operating system.
API STATUS: in-dev, APIs aren’t frozen yet and are subject to change

platform

This constant returns the platform your program is currently running on. It will
return one of the following strings:

	'aix'

	'darwin'

	'freebsd'

	'linux'

	'openbsd'

	'sunos'

	'win32'

Usage

prints the platform to stdout
println(system.platform); # prints: "darwin"

home

This constant returns the home directory of the user that is running your carbon
program.

Usage

prints the home directory to stdout
println(system.home); # prints: "/users/nick/"

arch

This constant returns the system’s CPU architecture as a string. It will return
one of the following strings:

	'arm'

	'arm64'

	'ia32'

	'mips'

	'mipsel'

	'ppc'

	'ppc64'

	's390'

	's390x'

	'x32'

	'x64'

	'x86'

uptime()

This function returns the system uptime in number of seconds.

freeMemory()

This function returns the amount of free system memory in number of bytes.

totalMemory()

This function returns the amount of total system memory in number of bytes.

Bytecode Specification

0: null

Pushes a Carbon “null” value to the stack.

1: pushnum (number)

Pushes a Carbon Number value to the stack.

pushnum 0

2: pushstr (string addr)

Pushes a string from the string registry to the string.

The following bytecode pushstr 0 gets the string with address 0 from the string reg,
and pushes it to the stack as a carbon string.

3: pusharr (initial length)

Pushes an array to the stack.

The following bytecode

pushnum 1000
pushnum 2000
pusharr 2

pushes [1000, 2000] to the stack. The first argument is the initial length of the
array, so the VM knows how much to read on the stack.

4: negative

unused.

5: valadd

Adds the 2 values above it on the stack and pushes the result to the stack.

The following bytecode

pushnum 100
pushnum 200
valadd

is the equilevant of 100 + 200.

6: valmlp

Multiplies the 2 values above it on the stack and pushes the result to the stack.

The following bytecode

pushnum 100
pushnum 200
valmlp

is the equilevant of 100 * 200.

7: valdiv

Divides the 2 values above it on the stack and pushes the result to the stack.

The following bytecode

pushnum 100
pushnum 200
valdiv

is the equilevant of 100 / 200.

8: valsub

Subtracts the 2 values above it on the stack and pushes the result to the stack.

The following bytecode

pushnum 200
pushnum 100
valsub

is the equilevant of 200 - 100.

9: valmod

Gets the modulo of the 2 values above it on the stack and pushes the result to the stack.

The following bytecode

pushnum 200
pushnum 100
valsub

is the equilevant of 200 % 100.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

